Parallel Modularity-based Community Detection on
Large-scale Graphs

Jianping Zeng, Hongfeng Yu
Department of Computer Science and Engineering
University of Nebraska Lincoln
Lincoln, Nebraska
Email: {jizeng, yu}@cse.unl.edu

Abstract—We present a parallel hierarchical graph clustering
algorithm that uses modularity as clustering criteria to effectively
extract community structures in large graphs of different types.
In order to process a large complex graph (whose vertex number
and edge number are around 1 billion), we design our algorithm
based on the Louvain method by investigating graph partitioning
and distribution schemes on distributed memory architectures
and conducting clustering in a divide-and-conquer manner. We
study the relationship between graph structure property and
clustering quality, carefully deal with ghost vertices between
graph partitions, and propose a heuristic partition method
suitable for the Louvain method. Compared to the existing
solutions, our method can achieve nearly well-balanced workload
among processors and higher accuracy of graph clustering on
real-world large graph datasets.

Index Terms—large graph; community detection; graph clus-
tering; parallel and distributed processing.

I. INTRODUCTION

Retrieval of information or patterns hidden in graphs is
of great interest in numerous fields. Researchers have made
substantial efforts to analyze and understand the organization
of graphs. One of the powerful techniques is graph clustering,
or named community detection. There is no strict definition
on community or cluster of a graph; however, one commonly
accepted concept is that a graph is partitioned into sub-groups
(communities or clusters) of vertices who have dense intra-
connections, but sparse inter-connections [1].

As we enter the era of big data, graph clustering becomes
a severely challenging task due to an exponential growth of
graph size. A large graph can contain millions of vertices and
billions of edges, which is hard to be processed efficiently
using a single machine. Parallel clustering, which uses parallel
machines with distributed memory, provides a natural solution
to cope with large data. However, there is still a lack of
scalable parallel algorithms for large graphs, mainly due to
the following reasons.

First, most large and complex graphs are characterized with
a scale-free structure such that only a few vertices have high
degrees but most vertices have low degrees [2]. The sparse
connections between the vertices incur a poor locality during
data access for most primitive graph operations. Thus, when
such a graph is partitioned and distributed among processors,
parallel operations often suffer intensive data communication
and imbalanced workload.

Second, after data partitioning and distribution, the global
structure information of a graph is typically not preserved on
each processor. Missing of such information can lower the
cluster quality of local community detection and impair the
accuracy of final aggregated results.

In this work, we aim to boost the scalability and the
accuracy of parallel community detection. In particular, we
implement a parallel modularity-based algorithm using dis-
tributed memory machines, and increase the clustering quality
by considering the information of ghost vertices for local
clustering. We study the interplay between graph structure
property and clustering quality, and make use of graph degree
distribution to study clustering accuracy. With considering
modularity-based clustering, we develop a novel graph parti-
tioning and distribution scheme to achieve workload balancing
among processors and ensure the quality of clustering. We
demonstrate the effectiveness and scalability of our algorithm
using several real-world large datasets with up to 16,384
cores. The experimental study shows that our approach can
achieve an improved accuracy that is close to the ground
truth generated by the sequential algorithm. To the best
of our knowledge, we present the first scalable distributed
modularity-based algorithm to cluster the full extent of a large
graph with over 1 billion edges.

II. RELATED WORK

We refer interested readers to the literature survey [1] for
an in-depth overview of graph clustering algorithms. We first
review the sequential algorithms relevant to our work, and then
discuss the corresponding work on parallelization.

Label propagation algorithm (LPA) [3] is one of the most
representative graph clustering algorithms. In LPA, each vertex
iteratively picks a label in its neighborhood that has the
maximum frequency and the group of vertices with the same
label forms a cluster. Label Propagation Algorithm (SLPA) [4]
is an improvement on LPA. In 2004, Newman and Girvan [5]
introduced the modularity measurement to quantify the quality
of graph clustering, which laid the foundation of the modular-
ity based clustering algorithms. Afterwards, Clauset, Newman,
and Moore [6] proposed an agglomerative graph clustering
algorithm (also known as Clauset-Newman-Moore algorithm,
CNM for short), which merged the vertices achieving the
global maximum modularity value. Blondel et al. [7] proposed

a heuristic method, known as the Louvain method, which can
achieve a better result with a lower time complexity.

There have been some efforts in parallelizing graph clus-
tering for large scale graphs based on shared memory archi-
tecture. Riedy et al. presented a parallel agglomerative algo-
rithm [8] that extended the CNM algorithm. Their approach
treated the problem as the maximum edge weighted matching
problem and performed multiple pairwise community merges
in parallel. In some case, the algorithm can produce a max-
imum matching within a factor of 50%. Kuzmin et al. [9]
proposed a multi-thread SLPA algorithm for shared memory,
but their method can only process a graph in the order of
ten million edges. Recently, Bhowmick et al. [10] proposed
an OpenMP implementation which adopted lock mechanism
with a limited scalability. Staudt et al. [11] proposed a
shared memory parallel clustering algorithm that combined
the Louvain method and the LPA method. They conducted
the algorithm using a computer with 512GB main memory.
Lu et al. [12] proposed a parallel Louvain algorithm based on
coloring preprocessing.

There is comparably limited work of parallel graph clus-
tering on distributed memory architecture. Zhang et al. [13]
proposed a parallel hierarchical graph clustering method that
dynamically constructed the network topology. Soman et
al. [14] built a parallel LPA graph clustering on GPUs cluster
that was limited to a marginal size graph. Cheong et al. [15]
presented a GPU-based Louvain algorithm that partitioned
the original graph into several sub-graphs, ignored the edges
connecting vertices residing in different sub-graphs, and con-
ducted clustering using divide-and-conquer strategy. However,
their accuracy of clustering result was relatively lower than the
ground truth on multiple GPUs. Que et al. [16] implemented
a distributed Louvain algorithm, but their experiment only
showed the processing of real-world graphs with less than 1
billion edges.

III. OUR APPROACH

The Louvain algorithm is characterized with a nearly linear
time complexity and achieves the highest quality of commu-
nity detection compared to any other sequential algorithms.
However, the corresponding parallelization attempts have not
demonstrated a desired scalability for large graphs. In addition,
they have used simple graph partitioning and distribution
schemes that cannot ensure the accuracy of clustering.

In our approach, we first revisit several key definitions and
concepts in the Louvain algorithm (Section III-A), and study
the relationship between graph structure property and cluster-
ing accuracy (Section III-B). We find that ghost vertices are
critical to the accuracy of parallel clustering, which however
have been largely neglected in existing work. Based on our
observations, we design a new scheme for graph partitioning
and distribution (Section III-C), leading to a scalable design
of parallel Louvain algorithm that ensures balanced workload
and accurate clustering for large graphs (Section III-D). In the
following, we describe the details of our approach.

A. Background

Without loss of generality, we only consider undirected
graphs in this work. However, our approach can be easily
extended to directed graphs [15].

In a graph G = (V,E), V is the set of vertices (or nodes)
and E is the set of edges (or links). The weight of an edge
between two vertices, u and v, is denoted as w,,, which is
1 in undirected unweighted graph. In order to partition the
original graph into sub-graphs for each processor, 1D partition,
also called vertex partition, is a partition strategy that assigns
vertices uniquely among the g processors po, p1,...pg—1. After
partitioning, the vertex number on each processor is roughly
the same. The edges incident to the vertices assigned to p;
are all stored on p;. After partitioning, the graph vertices that
are directly assigned to one processor, p;, are called the local
vertices of the processor, represented as Vy .. The vertices that
locate on foreign processors, but are connected to the local
vertices of p; are called the ghost vertices, represented as Vgp,.
The edges only connecting local vertices of p; are represented
as Eyp,;, and the edges between ghost vertices and local vertices
of p; are represented as Eg,,.

Modularity, Q, is a measurement used to quantify the
quality of communities detected in a graph [6], which can
be formulated as:

= oL Y A — 4%18(C,,C), (1)

where m is the number of edges in the graph, v and w are two
vertices, and d, and d,, are the degrees of v and w, respectively.
A,,, represents the connectivity between v and w, which is 1
when v and w are connected by an edge and is O otherwise. C,
and C,, are the communities that contain v and w, respectively.
The value of 6 function is 1 when C, and C,, is the same
community; otherwise it is 0. The intuition of Equation 1 is
that if the modularity value is high, there are many edges inside
communities but only a few between different communities,
indicating a high quality of community detection.

Modularity gain §Q [7] is the gain in modularity obtained
by moving an isolated node v; into a community C, which can
be easily computed by:

Zm +kt lVl ZIU[kV'
50 = — (e

2m

[Zm (Lror |2)

)

where) ;, is the total edge weight inside C, k,, ;, is the sum of
edge weight from a vertex v; to C, Y, is the total weight of
edges incident to vertices belong to C, k,, is the total weight
of edges incident to v;, and m is the sum of the weights of all
edges in the graph. We can simplify Equation 2 and obtain:

tor *kv;
5O = 5 (ki — By, (3)
This equation can be further approximated as:
5O ~ kyy i — E 1 0))

The Louvain algorithm is designed based on the modular-
ity measure (Equation 1). It is a hierarchical agglomerative
clustering method in that initially each vertex is regarded
as a unique community, and then communities are merged

Fig. 1: The simplified 1D partitioning and distribution scheme.
A graph is partitioned into 2 sub-graphs denoted with different
colors. The edges between the sub-graphs are ignored.

iteratively. In each iteration, multiple communities are merged
into a new community to maximize the modularity gain (Equa-
tion 2, or the approximation, Equation 4). This process goes
on until there is no modularity gain among new communities.

B. Clustering Accuracy Study

Divide-and-conquer is a conventional strategy widely used
to parallelize algorithms on distributed memory architecture.
For parallel graph community detection, a general idea is
to partition a large graph into sub-graphs and distribute
them among processors. Each processor then conducts local
community detection and then collaboratively aggregates the
final result. This strategy has been adopted in most existing
distributed parallel algorithms [15], [14].

Data partitioning and distribution scheme is the key to the
scalability of a parallel algorithm [17]. With respect to par-
allel community detection, we need to design an appropriate
scheme by considering both the quality and the performance of
solutions. However, these two issues have not been extensively
and holistically studied. For example, Buluc and Madduri [18]
discussed the relationship between the communication cost
and the graph partitioning and distribution scheme for par-
allel graph traversal, but the relation between community
quality and partition strategy is not their focus. Cheong et
al. [15] adopted a simple 1D graph partitioning and distri-
bution scheme. Although they achieved reasonable clustering
results, they did not provide corresponding rationales. Hence,
the fundamental relationship between community quality and
graph partitioning and distribution scheme is not entirely clear
in their method.

Because Cheong et al.’s approach achieves one of the best
clustering results among the existing distributed parallel algo-
rithms based on GPUs cluster, we are interested in studying
the rationales behind their approach. Figure 1 revisits the
simplified 1D partitioning and distribution scheme adopted in
their method, where a graph is partitioned into a number of
sub-graphs, each sub-graph only contains the local vertices
and the edges between them, and the edges between the local
vertices and the ghost vertices are ignored for each sub-graph.
We represent this type of sub-graph on a processor p; as
Grp; = (Vipir Evp,)-

1) Characterization of Sub-Graphs: We observe that degree
distribution is a critical graph structure property related to the
quality of graph clustering and can be used to explain Cheong
et al.’s approach. This is mainly because of two reasons. First,
according to Equations 1 and 4, we only need degree informa-
tion and edge number to calculate modularity and modularity

—— Original Graph
——128 cores
——256 cores
——512 cores

—— Original Graph
——128 cores
——256 cores
——512 cores

count
3,

10° 10' 10 10° 10 10° 10° 10' 10" 10° 10° 10°
degree degree

(a) (b)

Fig. 2: Comparison of degree distribution between sub-graphs
and original graph. (a) shows the results of an Orkut dataset.
(b) shows the results of a Youtube dataset. In each plot,
the blue curve corresponds to the degree distribution of the
original graph; and the remaining three curves correspond to
the average degree distribution of sub-graphs on 128, 256, and
512 cores, respectively.

Fig. 3: The partitioning and distribution scheme with ghost
vertices. A graph is partitioned into 2 sub-graphs with different
colors. The vertices circled in green are the ghost vertices, and
their colors correspond to their sub-graphs. The dotted lines
represent the edges connecting the local vertices and the ghost
vertices across the sub-graphs.

gain, where the number of edges can be derived from degree
information. Thus, the measurement of modularity mainly
depends on graph degree information. Second, if we preserve
the degree distribution of each sub-graph, other graph structure
properties (such as, connected component size and clustering
coefficient) can be preserved as well [19].

We can further use degree distribution to explain the effec-
tiveness of 1D graph partition in the result obtained by Cheong
et al., that is why local clustering can be applied on each sub-
graph and lead to a reasonable global result. We observe that
when we use 1D graph partition, the degree distribution of
each sub-graph is approximately coherent with the original
global graph. Figure 2 shows a comparison of degree distri-
bution between the sub-graphs and the original graph using
two real-world datasets from Orkut [20] and Youtube [21] on
128, 256, and 512 cores, where the average degree distribution
of sub-graphs is generally matched with that of the original
graph. This verifies that 1D graph partition can preserve the
structure property of a graph to a certain degree, and achieve
a comparably appropriate quality of community detection.

However, we also observe that there is still some slight
difference between the sub-graph degree distribution and the
original graph degree distribution in Figure 2. This is be-
cause the 1D graph partition scheme used in Cheong et al.’s
work ignored the edges between local vertices and ghost

Orkut
wio Ghost Vertices
— with Ghost Vertices

count
count

—— Orkut
wio Ghost Vertices
— with Ghost Vertices

—Orkut
wio Ghost Vertices
—with Ghost Vertices

count

10'

0 1 102 103
degree

(a)

10

10

2 103
degree

()

10°
degree

(b)

Fig. 4: Comparison of degree distribution between sub-graphs with ghost vertices and without ghost vertices. (a), (b) and (c)
show the comparison results using 128, 256, and 512 cores, respectively. In each plot, the blue curve corresponds to the degree
distribution of the original graph; and the red and green curves correspond to the average degree distributions of sub-graphs
with ghost vertices and without ghost vertices, respectively. We can see that the degree distribution of sub-graphs with ghost

vertices is more similar to that of original graph.

vertices, and certain degree information of local vertices is
lost. Thus, we naturally have an intuition that if we consider
ghost vertices, we can make the structure information of sub-
graph on each processor more close to the original graph.
To testify this hypothesis, rather than ignoring the edges
connecting the local vertices and the ghost vertices, we store
all these edges and the ghost vertices for each sub-graph. We
do not consider the edges between the ghost vertices, but
use the degrees of the ghost vertices in the original graph.
Figure 3 shows this partitioning and distribution scheme. We
represent this new type of sub-graph on a processor p; as
Grpi = (Vip; UVGpi ELp U EGp;)-

We then compare the degree distribution between the sub-
graphs with ghost vertices and the sub-graphs without ghost
vertices using the Orkut dataset on different cores. As shown
in Figure 4, we can clearly see that, with considering ghost
vertices, we make the sub-graphs have a more similar degree
distribution with the original graph. This means the sub-graph
on each processor well preserves the structure information
of the original graph. We present a detailed quantitative
comparison between these two schemes in Section IV-C.

2) Clustering Accuracy: We derive a lemma that shows
clustering accuracy decreases if ghost vertices are ignored.

Lemma 1: For a sub-graph, a local vertex can be clustered
into a wrong community without considering ghost vertices.

Proof Given a local vertex u, if we ignore any ghost vertices
u connects with, u will definitely be clustered with the local
vertices. However, if u also connects with the ghost vertices,
there can exist a ghost vertex v, that gives us the maximum
modularity gain according to Equation 4. As a result, the local
vertex u should be clustered with v, rather than any other
local vertices, thus occurring a local clustering error.

This lemma shows that an involvement of ghost vertices is a
necessity for preserving graph structure on each processor and
for improving clustering accuracy.

total degree
sub-graph, 6
sub-graph, 6
sub-graph; 4

: total degree
sub-graph, | 10
; 14
sub-graph, | 8

sub-graph,

(b)

Fig. 5: (a) and (b) show the results of 1D partitioning without
and with considering ghost vertices, respectively. The tables
show the total degrees of sub-graphs in each case. The vertices
circled in green are the ghost vertices. Three sub-graphs are
distinguished by the colors of local vertices.

C. Graph Partitioning and Distribution Scheme

The involvement of ghost vertices, however, substantially
increases the complexity in partitioning and distribution of a
graph to achieve load balancing. We can illustrate the difficulty
by first revisiting the workload estimation of the sequential
Louvain algorithm: In an iteration of the sequential Louvain
algorithm, for each vertex v, we need to find the maximum
modularity gain by going through each neighbor of v to find
the maximum modularity gain. Thus, we can easily see that
the overall complexity of the sequential Louvain algorithm is
proportional to the total degree of all vertices of a graph.

If we use a simple 1D partitioning and distribution scheme
without considering ghost vertices as Cheong et al. [15], we
can achieve a nearly balanced workload partition because each
sub-graph has an approximately equal summation of its local
vertex degrees, where the edges between local vertices and
ghost vertices are neglected. Figure 5 (a) shows an example

where a graph is partitioned into 3 sub-graphs without con-
sidering ghost vertices. However, if we involve ghost vertices,
the total degree of each sub-graph can become significantly
different, although each sub-graph may still have a similar
number of local vertices. As shown in Figure 5 (b), the sub-
graph, sub-graph;, has the same set of local vertices as in
Figure 5 (a); however, its total degree is significantly higher
than the others. This typically happens when a local vertex has
a large degree and is connected to many ghost vertices. In this
case, if we conduct the Louvain algorithm on each sub-graph,
the workload can be significantly different, although we can
achieve more accurate clustering on each sub-graph.

1) Workload Estimation: This issue seems inevitable given
that a large graph with a scale-free structure may always have
a few vertices with very high degrees. We derive the following
lemma to cope with this issue according to Equation 4.

Lemma 2: Given an sub-graph on a processor p;, Grp, =
(Vip UVip,, ELp; U Egp;), we have a set of ghost vertices
Vg, Vgyy -5 Vg, € VGp;» Which only connect the same local ver-
tex v;. If argmin(degree(vy,),degree(vy,),...,degree(vy,)) =
Vg, then in the final clustering result of this sub-graph,
C(vy) # C(vg,), where g1 < g, < g, and gj # ga-

Proof We prove this lemma from two aspects:

First, we show that if in some iteration C(v;) = C(vg,), then
in the following iterations, C(v;) # C(v,,), where g1 < g, < g,
and gp # ga-

According to Equation 4, the modularity gain between v;
and a ghost vertex vy, is:

Ztot(vg[) *dvl

m

5Qv1vg'. ~ dvl,vgl. - 5)

In Equation 5, we note that d,, ,,, = 1, as there is only one edge
between v; and v,. In addition, d,, and m are constant. Thus,
given vg, has the lowest degree among vy, ,Vg,,...,Vg,, WE
can easily see that ¥ror(y,,) < Eror(v,,) and 8Qvv,, > 6Quu, »
where g; < g < g, and g, # g,. This means that once
C(v;) = C(vg,), C(v;) cannot become C(v,,) in the following
iterations.

Second, even if in some iteration C(v;) = C(v,,), We can
also easily see that C(v;) # C(v,,) in a later iteration based
on our proof in the first aspect.

Lemma 2 allows us to prune a considerable amount of ghost
vertices for one sub-graph. For example, considering the sub-
graph, sub-graph,, in Figure 5 (b), the ghost vertices, vi, vy,
ve, and vy, all connect and only connect to the local vertex
v3. The degree of vg is the smallest among these four vertices.
According to Lemma 2, only vg needs to be considered for
local clustering, and the rest ghost vertices can be discarded.
This reduces the total degree of the second sub-graph from 14
to 8, and thus significantly reduces the associated workload.

Based on Lemma 2, we develop a heuristic method to
estimate the workload of each partition according to the edge
numbers in adjacency matrix. We note that each non-empty
entity in an adjacency matrix represents an edge. Figure 6 (a)
shows the adjacency matrix of the graph in Figure 5. Each

01 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8

01 2 3 4 5 6 7 8

© N O v A W N Rk O
® N O U A W N Rk O
® N O U s W N R O

(a) (b) ()

Fig. 6: (a) shows the adjacency matrix of the graph in Figure 5.
It contains 9 vertices, and each non-empty entity represents
an edge. We partition the matrix vertically. For each partition,
the local vertices are circled in red, and the ghost vertices are
circled in blue. (b) shows a partition only containing v3, and
(c) shows a partition containing both v3 and vg4.

gray cell corresponds to one edge. If a partition only contains
a local vertex v;, and all ghost vertices of this partition connect
to this local vertex, then in this case we only need to examine
at most one ghost vertex to determine the modularity gain,
according to Lemma 2. Figure 6 (b) shows an example, where
we have one partition containing only v3. The blue region
corresponds to the ghost vertices and the red region indicates
the local vertex. Obviously, there is no workload associated
with the local vertex because it lacks edges in the red region.
Although there are multiple edges in the blue region, only
one vertex (vg in this case, because vg is the ghost vertex with
minimum degree connecting with v3 in the partition) needs to
be considered.

The workload of one partition increases if more local
vertices are added. For the local vertices, we simply count
the total number of edges among local vertices. For the ghost
vertices that have more than one edges connecting to the
local vertices, we count these edges. For the ghost vertices
that have only one edge connecting to the local vertices, we
use a simplified heuristic that only counts one of these edges.
Figure 6 (c) shows an example, where we have one partition
containing v3 and v4. The red region contains two edges with
respect to the local vertices. The blue region totally contains
six edges, where vs has two edges connecting to the local
vertices, but vi, vp, vg, or v7 only has one edge. In this case,
we count the two edges of vs, but only count one edge for the
rest of ghost vertices. Therefore, the workload of this partition
is proportional to five edges (i.e., two local edges plus three
ghost edges). This method can be easily extended to estimate
the workload of a partition containing more local vertices.

2) Graph PFartition Algorithm: We next examine how to
partition a graph into a set of sub-graphs. Given g processors
and a graph G = (V,E), the task is equal to vertically split the
adjacent matrix of G into g partitions, where each partition
contains multiple rows and is associated with an approximately
equal amount of workload.

At first glance, this problem is similar to 1D workload
balancing problem, and Pinar and Aykanat provided a survey
of related solutions [22]. However, they only considered one
variable during partitioning. In our problem, we have two

variables, which are the workload associated with only local
vertices and the workload associated with both local vertices
and ghost vertices. More specifically, due to our pruning
strategy, the workload associated with local vertices and ghost
vertices depends on how we partition the graph, and thus is
not deterministic. Hence, the existing solutions [22] cannot be
directly applied to our workload estimation. Besides, there is
some other heuristic method for 1D partition [23]. However,
their workload estimation for each row in the matrix can be
done independently, and this is not the case in our problem.

We develop a new heuristic partition algorithm suitable for
our own parallel Louvain algorithm. The key is to find an ap-
propriate average workload 4 to partition the adjacent matrix.
However, given our estimation method in Section III-C1, the
workload of a partition depends on the connectivity of local
vertices and ghost vertices that can be dramatically changed
even if we only add or remove a few local vertices. To cope
with this issue, we begin with an initial guess of an average
workload Ay for each partition, where hy =| E | /q. Then we
sequentially process the adjacent matrix and split it into g
partitions. We can easily let each of the first gy — 1 partitions
has a workload around hg. However, we cannot guarantee that
go = q and the workload of the last partition Ay, is around
ho. We adjust our guess of i according to two cases:

First, if go < g or if go = g but hy,_1 < hg, this means that
our initial guess Ay is relatively large. In this case, we decrease
ho. Our next guess hy is (ho + hy,,) /2, where hy,,, is the lower
bound of /4 and its initial value is 1. We also update the upper
bound £, to hy.

Second, if go > g, this means that our initial guess hg is
relatively small. In this case, we increase hy. Our next guess
hi is (ho+hyp)/2, where the initial value of upper bound 7,
is | E |. We also update the lower bound /y,,, to hy.

We continue this iterative change of A;, hy,, and hyp,, and
let h; be the average of Ay, and h,,. The iteration stops when
gi = q and the difference between hy,— and h; is less than
a threshold €. Algorithm 1 sketches the procedure. In the
algorithm, ¢; is the partition number in an iteration i, hy, 1
is the workload of the last partition in the iteration i and | N |
is the vertex number of the graph.

In our algorithm, we essentially visit all the edges in each
iteration, and thus the complexity of each iteration is O(| E |).
Moreover, because initially /,, = 1 and hy, =| E | and we
search £ in a binary fashion, it takes O(log | E |) iterations for
us to find the desired /. Therefore, the total complexity of our
approximation algorithm is O(| E |log | E |).

D. Parallel Modularity Based Clustering

Our parallel clustering algorithm follows the conventional
divide-and-conquer strategy. In Cheong’s method [15], they
state this strategy works for parallel Louvain algorithm be-
cause in dividing stage the graph can be efficiently merged
and in the reduction stage the graph size is several order
less than the original one. Therefore, the convergence of the
algorithm is assured. We first partition and distribute a single
large graph among the processors using our graph partition

Algorithm 1 Graph Partition Algorithm

Input:
undirected graph G = (V,E);
stopping threshold &;
required partition number g;

Output:
Q: resulting partitions
1: set ho=|E | /q
2: set gy =1 and hy, =| E |
3: set i =0 // the iteration number
4: repeat
5. clear Q
6. setstart =0; end =0
7: repeat
8: estimate the workload w of the partition between
start and end
9: if w < h; then
10 end = end + 1
11: else
12: create a partition p between start and end, and add
p into QO
13: start = end + 1
14: end = start
15: end if

16: until end >| N |
17: g; = the size of Q

18: hy,—1 = the workload of the last partition
19: if g; <qor (¢;=q and h,,_| < h;) then
20: hup = h;

21: end if

22: if g; > q then

23: hiow = hj

24: end if

25: h; = (hup + hlaw)/Z

26 i=i+1

27: until g; == q and abs(h; —hy,—1) < €

algorithm (Algorithm 1), where we divide a graph among g
processors, and each processor is assigned with a set of local
vertices, and duplicate ghost vertices among the processors
to improve the degree distribution of sub-graph. In this way,
we recreate a sub-graph consisting of local vertices and ghost
vertices. According to Lemma 1, this 1D partition can increase
the accuracy of local clustering.

After that, the processors exchange ghost vertices. Each
processor then conducts local clustering where both local and
ghost vertices are considered. After each processor generates
its local clusters, a local clustering is conducted on the root
processor to obtain the final clustering result. Algorithm 2
shows the framework of our parallel clustering.

Our local clustering algorithm is similar to the sequential
Louvain algorithm with involving both local and ghost ver-
tices. The difference is that, in our local clustering, we assume
the ghost vertices as read-only vertices. This means that we can

Algorithm 2 Parallel Clustering Algorithm

Algorithm 3 Modified Local Clustering Algorithm

Input:
undirected graph G = (V,E);
modularity gain threshold 0;
partition and distribute the input graph
exchange ghost vertices among processors
for all processor p; do
local graph clustering
end for
for all processor p; do
local graph merging
end for
root processor gathers local clustering results
do local graph clustering on root processor

R A A R ol e

._
4

change the communities of local vertices into the communities
of other local vertices or ghost vertices, but we always keep
the communities unchanged for ghost vertices. In this way,
we use the degree information of ghost vertices to enhance
the structure information of sub-graph, and increase the local
clustering accuracy. The communities of ghost vertices are
only changed on their host processors. Algorithm 3 shows the
detailed local clustering algorithm. In the algorithm, C/,j is the
community of vertex u in iteration k. We note that, in Line 10,
only the modularity gain of local vertices is calculated. But
for the neighbors of local vertices, both the local vertices and
the ghost vertices are considered, as shown in Line 16.

After each processor generating its local communities, we
need to merge the local communities to form a new global
graph. This requires each vertex has a globally unique commu-
nity index. However, in the local clustering, a local vertex can
be assigned a community index of other local vertices or the
ghost vertices. In this case, a local vertex can have the same
community index with a certain ghost vertex, and we need
to distinguish them using different community indices. To this
end, we assign a different unique index for those local vertices.
Because the Louvain method is a heuristic clustering, we
can leave these communities to global clustering for deciding
whether they should be merged together or not.

IV. EXPERIMENTAL RESULTS

A. Setup

In this section we present the experimental evaluation of our
parallel graph clustering algorithm with respect to modularity
comparison, degree distribution comparison, and scalability
analysis. We tested our algorithm on the supercomputer, Titan,
at Oak Ridge National Laboratory. The system contains 18,688
nodes with Gemini interconnect. Each node has 16-core AMD
Opteron CPUs with 32 GB of RAM. Our parallel program
is entirely written in C++ with MPI for parallelism. Table I
shows the real-world large-scale graphs used in our study. We
use the full extent of these graphs, rather than use sampling
to reduce the graphs as in Cheong’s work [15].

Input:
G" = (V°,E®) : undirected graph, where V* contains local
vertices and ghost vertices;
€Y : initial community of G';
6 : modularity gain threshold;
MaXiteration - Maximum iteration number;
Output:
C: resulting community
Q: resulting modularity
1: k=0 // k indicates the iteration number

2: repeat
3. for all u € local vertices of V¥ do
4 set Ck =u
k
5 set Zg,“ = Wy, (u,u) € EX
k
6: set Y& = Wi, (u,v) € EF
7 end for
8 randomize the order of vertices
9 repeat
10: for all u € local vertices of V¥ do
11: /lweight (u) is the total edge weights incident to u
ck ck .
12: Yoo = Lo —weight (u)
13: Ilweight (u,CF) is the sum of edge weight from u

to CX, and in(u) is the weight of u’s self loop edge
k

14: Zicn“ = Zic;‘]: —2 xweight (u,C*) — in(u)
15: /I neighbor(u) contains the adjacent vertices of u
16: for all v € neighbor(u) do
17: Ck = argmax(8Qcx, c+)
18: end for o
c ct .
19: 2,02 =):,O‘k, —weight (u)
20: Zg,“ = Zicn" —2 x weight (u,C*) — in(u)
21: end for

22: until 60 <0

23: //Build a new graph

%4 VL ck

25: EML o e(Ck.CH

26 k=k+1

27: until k < maxiierarion and 6Q < 0

TABLE I: Datasets used in our experimental study.

Name Description #Vertices | #Edges
uk-2005 [24] the .uk domain 39.46M| 936.4M
webbase-2001 [20]|a crawl graph by WebBase 118.14M 1.01B
Orkut [20] a Google’s social networking 3.07M|225.53M
LiveJournal [20] |a virtual-community social site 5.20M| 76.94M
YouTube [21] Youtube friendship network 11.34M| 29.87M
DBLP [21] a co-authorship network from DBLP 0.31M 1.04M
Amazon [21] frequently co-purchased products 0.33M| 0.92M

Besides, in order to compare with Cheong’s work, we
implemented an MPI version of their algorithm that can
process the full extent of each large graph in Table I. We refer
this implementation as Cheong’s method in the following. In
order to verify if our method can achieve a more balanced
workload computation, we also implemented an MPI version
graph clustering algorithm using the conventional 1D partition

considering both local vertices and ghost vertices.

B. Modularity Comparison

Modularity is designed to measure the quality of graph clus-
tering. A higher value of modularity means graphs have dense
intra-community connections but sparse inter-community con-
nections. In this section, we compare the modularity values
among the sequential Louvain algorithm, Cheong’s method,
and our method. We use the modularity obtained by the
sequential Louvain algorithm as the ground truth.

Table II shows the result of modularity comparison. The
difference columns show the relative differences with respect
to the ground truth. A positive (negative) difference value
means a higher (lower) modularity, implying a better (worse)
clustering quality. We can observe that the modularity values
of our clustering results are closer to the ground truth and
some of them are even higher than the ground truth. This
shows that our method can achieve more accurate clustering
results by considering both local vertices and ghost vertices.
In original Cheong’s method, inaccuracy is introduced as the
ghost vertices are ignored. In our method, we can effectively
improve the accuracy and make our modularity value close
to or even higher than the modularity value of the sequential
Louvain algorithm.

TABLE II: Modularity Comparison

Graph Louvain Cheopg’s Mgthod Ogr Methpd

modularity | difference | modularity | difference
uk-2005 0.979 0.979 0.00% 0.980 0.10%
webbase-2001 0.984 0.984 0.00% 0.985 0.11%
Orkut 0.661 0.600 -9.22% 0.660 -0.30%
LiveJournal 0.734 0.704 -4.08% 0.749 2.04%
YouTube 0.715 0.709 -0.80% 0.715 0.00%
DBLP 0.820 0.800 -2.44% 0.816 -0.49%
Amazon 0.926 0.920 -0.65% 0.925 -0.11%

We note that for the LiveJournal and Orkut datasets, the
modularity values of our method are noticeably higher than
Cheong’s. These two datasets correspond to dense social
networks where the average degree of vertices is signifi-
cantly higher than the other graphs, as indicated by the high
edge/vertex ratios in Table I. This shows that the structure
information, particularly degree distribution, is critical to dense
graphs. Our method can well preserve graph structure infor-
mation by appropriately involving ghost vertices.

C. Degree Distribution Comparison

We show the qualitative and quantitative comparisons of
degree distribution for all datasets between the conventional
1D graph partition without considering ghost vertices and our
graph partition with considering ghost vertices.

Figure 7 is the degree distribution comparison using dif-
ferent datasets and different numbers of cores!. Through
comparison, we can find that the degree distribution with
ghost vertices is more similar with the original graph degree
distribution. From the figure, we can find that if we do not

Due to the page limit, we only show the maximum number of cores that
we use to run our algorithm for each dataset.

Amazon
wio Ghost Vertices
—— wiith Ghost Vertices 10°

——DBLP
wio Ghost Vertices
——with Ghost Vertices

count

10° 10' 10° 10 10° 10' 10° 10
degree degree

(a) Amazon / 256 cores (b) DBLP / 256 cores

LiveJournal
wio Ghost Vertices
——with Ghost Vertices

YouTube
wio Ghost Vertices
—with Ghost Vertices

count
3

count
3

Y .

10° 10' 10" 10° 10° 10° 10° 10' 10" 10° 10° 10°
degree degree

(c) LiveJournal / 2,048 cores (d)Youtube / 2,048 cores

Orkut —— uk-2005
—wilo Ghost Vertices —wio Ghost Vertices
—with Ghost Vertices —with Ghost Vertices

count
count
3,

mz\\‘/\
o lllll" |
10 0 4 105

degree

10" 10' 10° 10° 10* 10 10 10’ 10

degree

(e) Orkut / 4,096 cores (f) uk-2005 / 16,384 cores

——webbase-2001
——wio Ghost Vertices
—with Ghost Vertices

count
3,

10l i |
10 10 10 10
degree

(g) webbase-2001 / 16,384 cores

Fig. 7: Comparison of degree distribution using different
datasets and different numbers of cores. In each plot, the blue
curve corresponds to the degree distribution of the original
graph; and the red and green curves correspond to the average
degree distributions of sub-graphs with ghost vertices and
without ghost vertices, respectively. We can see that the degree
distribution of sub-graphs with ghost vertices is more similar
to that of original graph.

consider ghost vertices, there will be a degree loss for high
degree vertices, which is the main difference between partition
without ghost vertices and our partition. We also observe that
for uk-2005 and webbase-2001, the degree distributions of
two partition schemes are nearly identical. This is because
the uk-2005 and webbase-2001 datasets are very large graphs
with respect to the core number. Thus, even ignoring ghost
vertices, the sub-graph on each core does not lose much struc-
ture information. For the other datasets, there are noticeable
discrepancies between the degree distributions conveyed by

TABLE III: D-statistics comparison.

Graph Core=32 Core=64 Core=128 Core=256 Core=512 Core=1024 Core=2048 Core=4096 Core=8192 Core=16384
No Ghost|Ghost|No Ghost|Ghost|No Ghost|Ghost|No Ghost|Ghost|No Ghost|Ghost|No Ghost|Ghost|No Ghost|Ghost|No Ghost|Ghost|No Ghost|Ghost|No Ghost |Ghost

uk-2005 0.0591 0.004 0.0650.007 0.072]0.012 0.088] 0.027 0.110]0.045 0.130] 0.060

webbase-2001 0.026 0.002 0.02710.040 0.0291 0.006 0.032]0.008 0.037]0.012 0.045]0.016

Orkut 0.5991 0.005 0.64810.009 0.682]0.016 0.707] 0.024 0.727]0.036 0.747]0.054 0.768] 0.084 0.794]0.130

LiveJournal 0.435]0.002 0.463 | 0.004 0.48410.006 0.501{0.010 0.516]0.016 0.536] 0.023 0.547]0.036

YouTube 0.796 0.005 0.834]0.007 0.862]0.010 0.879]0.014 0.8881 0.020 0.89710.030 0.9001 0.040

DBLP 0.425]0.004 0.466 | 0.006 0.495]0.010 0.512]0.017

Amazon 0.543]0.002 0.551]0.004 0.5690.005 0.581]0.010

the red and green curves.

We further use the Kolmogorov-Smirnov test to quantita-
tively compare the degree distribution between 1D graph par-
tition without considering ghost vertices and our partition with
considering ghost vertices. Kolmogorov-Smirnov test [25] is
also called D-statistic, which relies on the fact that the value
of the sample cumulative density function is asymptotically
normally distributed. This is a goodness-of-fit test for any sta-
tistical distribution. In order to apply the Komologrov-Smirnov
test, we need to first calculate the cumulative frequency of
the observations as a function of class. We then calculate
the cumulative frequency of the ground truth. The greatest
discrepancy between the observed and expected cumulative
frequencies is called D-statistic. A lower discrepancy means
the distribution of sample is more accordance with that of the
ground truth. In our case, we can easily calculate the degree
distribution of original graph, and then treat the average degree
distribution of sub- graph on each processor as a sample.
In this way, the greatest discrepancy between two degree
distributions can be calculated.

Table III shows the D-statistic comparison between partition
without considering ghost vertices (the “No Ghost” columns)
and our partition (the “Ghost” columns) using different num-
bers of cores>. We can clearly see that our partition method
can generate a lower value of D-statistic for each dataset over
different core numbers, which means our partition can generate
an average degree distribution more consistent with that of
the original graph. This quantitatively verifies that our method
can well preserve graph structure information on a sub-graph,
and thus explains that our method achieves superior clustering
quality with higher modularity values than Cheong’s method
as shown in Table II.

D. Scalability Analysis

Although Cheong’s method is less accurate, their method
can relatively easily achieve nearly balanced workload among
processors as ghost vertices are ignored. Therefore, in this
section we focus on a comparison between parallel graph
clustering using the conventional 1D partition with considering
ghost vertices and our method. Figure 8 shows the detailed
performance results using different datasets. In the figure, the
running time is the maximum local clustering time among
all processors. We can see that our method can achieve
a more scalable local clustering performance compared to
the conventional graph clustering using 1D partition with
considering ghost vertices.

2For each dataset, we choose the range of core numbers according to the
graph size.

——with heuristic partition ~#-w/o heuristic partition ——with heuristic partition ~#-w/o heuristic partition
1 05

0s

;ii S
0.03125 \\\l
—

0.03125

Time (sec)
Time (sec)

0015625 —
0.007812 0015625
32 64 128 256 32 64 128 256

Number of Cores Number of Cores

(a) Amazon (b) DBLP
——with heuristic partition -#-no heuristic partition ——with heuristic partition —#-w/o heuristic partition
s 1
S 05
= o Z o
2 - \I\ 2 s —
< — = -
g % — £ omus I
025 —, 0015625 \\
o1 0007812
256 s12 1024 2048 256 s12 1024 2048
Number of Cores Number of Cores
(c) LiveJournal (d)YouTube
—+—with heuristic partition -#-no heuristic partition —+—with heuristic partition -#-no heuristic partition
H 6
. 3
N 2
g g ~—
1
g \ ~ g -
3 -\‘ 2
5 1
s12 1024 2048 4006 1024 2048 4006 3192 16384
Number of Cores Number of Cores
(e) Orkut (f) uk-2005

—+—with heuristic partition —#-w/o heuristic partition ——with heuristic partition ——w/o heuristic partition

8 &

50

Time (sec)
Time (sec)

—

2048 4096 8192 16384

10 |
P

2

Number of Cores CoreID

(g) webbase-2001 (h)

Fig. 8: (a)-(g): Scalability study using different datasets. The
running time is plotted on a log-log scale. (h): The running
time of each core using the uk-2005 dataset on 1,024 cores. In
each plot, the red curve corresponds to the running time using
the conventional 1D partition, and the blue curve corresponds
to the running time using our method.

For the Amazon and DBLP datasets that are comparably
small, we process them using up to 256 cores, and our method
can achieve nearly 2x speedup compared to the conventional
method. For the LiveJournal, Youtube and Orkut datasets, our
method can achieve nearly 4x speedup. Even when using
4,096 cores for Orkut, our method can still have 2x speedup.

For two large-scale datasets uk-2005 and webbase-2001,
there is a noticeable difference between the running times
using the conventional method on 1,024 cores. Through a

comparison of degree distribution of these two datasets, we
find that although uk-2005 has smaller vertex number and edge
number than webbase-2001, the highest degree of vertex in
uk-2005 (more than 10°) is much larger than that in webbase-
2001(less than 10°), and the number of high degree vertices
in uk-2005 is also larger than that in webbase-2001. This
means that if only using the conventional 1D partition, it is
easy to incur a highly imbalanced workload among processors.
On the other hand, our heuristic partition can make cores
have balanced workload, and thus can effectively decrease
the maximum local clustering time. Figure 8 (h) shows the
running time of each core when 1,024 cores are used with
these two methods on dataset uk-2005. We can clearly see
that our heuristic partition achieves a more balanced workload
partition. For the webbase-2001 dataset, our speedup is less
obvious compared to the conventional method. This is because
this dataset has a less amount of high degree vertices, and the
conventional method can also achieve a relatively balanced
workload partition for 1,024 cores.

V. CONCLUSIONS

We study the relationship between the graph structure
property and the clustering quality. This leads us to investigate
the importance of ghost vertices in parallel clustering, which
however has been overlooked in the existing approaches. Our
parallel solution carefully takes ghost vertices into account,
and achieves higher-quality clustering results over different
types of graph datasets with a large number of processors. In
particular, for dense graphs, the involvement of ghost vertices
can well preserve the graph structure information in graph
partitioning and distribution, which makes the results of our
solution be significantly superior to the existing work. In
addition, thanks to our graph partition algorithm, our solution
achieve a well-balanced workload among processors, and has
demonstrated a highly scalable performance using real-world
graphs with over 1 billion edges on thousands of processors.

In both Cheong’s approach and our approach, a root pro-
cessor needs to gather all local clusters to generate the final
clustering result. This step can become a performance bottle-
neck with increasing graph sizes. We would like to address this
issue and conduct more detailed scalability study in the future.
In addition, we also plan to study the acceleration techniques
for our local clustering using GPUs. In this case, we expect the
final aggregation stage would introduce server communication
overhead. We would like to address this challenging issue in
the future as well.

VI. ACKNOWLEDGMENT

This research has been sponsored in part by the National
Science Foundation through grants I1S-1423487, and the De-
partment of Energy through the ExaCT Center for Exascale
Simulation of Combustion in Turbulence.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75-174, 2010.

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

A. Clauset, C. Shalizi, and M. Newman, “Power-law distributions in
empirical data,” SIAM Review, vol. 51, no. 4, pp. 661-703, 2009.

U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical Review
E, vol. 76, no. 3, p. 036106, Sep. 2007.

J. Xie and B. K. Szymanski, “Towards linear time overlapping commu-
nity detection in social networks,” ArXiv e-prints, Feb. 2012.

M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, p. 026113,
2004.

A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, no. 6,
p. 066111, Dec. 2004.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 10, p. 8, Oct. 2008.

E. J. Riedy, D. A. Bader, and H. Meyerhenke, “Scalable multi-threaded
community detection in social networks,” in Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International. 1EEE, 2012, pp. 1619-1628.

K. Kuzmin, S. Y. Shah, and B. K. Szymanski, “Parallel overlapping
community detection with slpa,” in Social Computing (SocialCom), 2013
International Conference on. 1EEE, 2013, pp. 204-212.

S. Bhowmick and S. Srinivasan, “A template for parallelizing the
Louvain method for modularity maximization,” in Dynamics On and
Of Complex Networks, Volume 2. Springer, 2013, pp. 111-124.

C. L. Staudt and H. Meyerhenke, “Engineering high-performance com-
munity detection heuristics for massive graphs,” in Parallel Processing,
2013 42nd International Conference on. I1EEE, 2013, pp. 180-189.
H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel heuristics for
scalable community detection,” Parallel Computing, vol. 47, pp. 19 —
37, 2015.

Y. Zhang, J. Wang, Y. Wang, and L. Zhou, “Parallel community detection
on large networks with propinquity dynamics,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD *09, 2009, pp. 997-1006.

J. Soman and A. Narang, “Fast community detection algorithm with
gpus and multicore architectures,” in Parallel Distributed Processing
Symposium (IPDPS), 2011 IEEE International, May 2011, pp. 568-579.
C. Y. Cheong, H. P. Huynh, D. Lo, and R. S. M. Goh, “Hierarchical
parallel algorithm for modularity-based community detection using
GPUS,” in Proceedings of the 19th International Conference on Parallel
Processing, ser. Euro-Par’13, 2013, pp. 775-787.

X. Que, F. Checconi, F. Petrini, T. Wang, and W. Yu, “Lightning-fast
community detection in social media: A scalable implementation of
the louvain algorithm,” Department of Computer Science and Software
Engineering, Auburn University, Tech. Rep. AU-CSSE-PASL/13-TROI,
2013.

P. Pacheco, An Introduction to Parallel Programming.
mann, 2011.

A. Buluc and K. Madduri, “Graph partitioning for scalable distributed
graph computations,” in Proceedings of 10th DIMACS Implementation
Challenge - Graph Partitioning and Graph Clustering, 2012.

C. Hiibler, H.-P. Kriegel, K. Borgwardt, and Z. Ghahramani, “Metropolis
algorithms for representative subgraph sampling,” in Proceedings of the
2008 Eighth IEEE International Conference on Data Mining, 2008.

P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), 2004, pp. 595-601.

J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics, ser. MDS *12, 2012, pp. 3:1-3:8.

A. Pimar and C. Aykanat, “Fast optimal load balancing algorithms for 1D
partitioning,” Journal of Parallel and Distributed Computing, vol. 64,
no. 8, pp. 974-996, 2004.

S. Miguet and J.-M. Pierson, “Heuristics for 1D rectilinear partitioning
as a low cost and high quality answer to dynamic load balancing,” in
High-Performance Computing and Networking. Springer, 1997, pp.
550-564.

P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable
fully distributed web crawler,” Software: Practice & Experience, vol. 34,
no. 8, pp. 711-726, 2004.

G. W. Corder and D. 1. Foreman, Nonparametric Statistics: A Step-by-
Step Approach. Wiley, 2014.

Morgan Kauf-

